Re ned Program Extraction from Classical Proofs

نویسندگان

  • Ulrich Berger
  • Wilfried Buchholz
چکیده

It is well known that it is undecidable in general whether a given programmeets its speci cation In contrast it can be checked easily by a machine whether a formal proof is correct and from a constructive proof one can automatically extract a corresponding program which by its very construction is correct as well This at least in principle opens a way to produce correct software e g for safety critical applications Moreover programs obtained from proofs are commented in a rather extreme sense Therefore it is easy to maintain them and also to adapt them to particular situations We will concentrate on the question of classical versus constructive proofs It is known that any classical proof of a speci cation of the form x yB with B quanti er free can be transformed into a constructive proof of the same formula However when it comes to extraction of a program from a proof obtained in this way one easily ends up with a mess Therefore some re nements of the standard transformation are necessary In this paper we develop a re ned method of extracting reasonable and sometimes unexpected programs from classical proofs Other interesting examples of program extraction from classical proofs have been studied byMurthy Coquand s group see e g in a type theoretic context and by Kohlenbach using a Dialectica interpretation We now describe in more detail what the paper is about In section we x our version of intuitionistic arithmetic for functionals and recall how classical arithmetic can be seen as a subsystem Then our argument goes as follows It is well known that from a derivation of a classical existential formula yA y A one generally cannot read o an instance A simple example has been given by Kreisel Let R be a primitive recursive relation such that zR x z is undecidable Clearly we have even logically

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of methods for extraction of programs from non-constructive proofs

Proofs in constructive logic correspond to functional programs in a direct and natural way. Computational content can also be found in proofs which use non-constructive principles, but more advanced techniques are required to interpret such proofs. Various methods have been developed to harvest programs from derivations in classical logic and experiments have yielded surprising and counterintui...

متن کامل

Classical Propositional Decidability via Nuprl Proof Extraction

This paper highlights a methodology of Nuprl proof that re sults in e cient programs that are more readable than those produced by other established methods for extracting programs from proofs We de scribe a formal constructive proof of the decidability of a sequent calculus for classical propositional logic The proof is implemented in the Nuprl system and the resulting proof object yields a co...

متن کامل

On the pointfree counterpart of the local definition of classical continuous maps

The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000